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Restricted Isometry Property in Wave Buoy
Analogy and Application to Multispectral Fusion

Taiyu Zhang and Zhengru Ren

Abstract— Real-time sea state information plays a pivotal
role in guiding decisions-making for various marine operations.
Utilizing the wave buoy analogy (WBA) enables a cost-effective
approach to estimating the wave spectrum through ship motion
responses, providing an almost real-time estimation of the sea
state. However, non-uniformly distributed response amplitude
operators (RAOs) bring about performance deterioration in
specific sea states, potentially leading to erroneous estimations
that could misguide decision-making and result in severe conse-
quences. Nevertheless, it is possible to combine multiple estimates
in a rational manner to improve the robustness and accuracy
of the WBA. In this study, the restricted isometry property
is introduced to evaluate WBA performance. An RAO-driven
assessment criterion is proposed to ascertain the reliability of
estimates based solely on RAO input. Building upon this assess-
ment criterion, we propose a multispectral fusion algorithm to
amalgamate multiple estimates obtained from ships with different
geometries and headings, ultimately generating a comprehensive
fused result. Numerical experiments are described to demonstrate
the proposed algorithm’s effectiveness.

Index Terms—Sea state estimation, wave buoy analogy,
restricted isometry property, multispectral fusion.

I. INTRODUCTION

NVIRONMENTAL conditions play a crucial role in

ensuring the safety and reliability of marine operations.
Therefore, in situ sea state information is essential for mak-
ing informed decisions and providing onboard operational
guidance [1], including in activities such as installation and
maintenance of offshore structures [2], [3], ship-borne aircraft
take-off and landing, ocean shipping [4], [5], etc.

Among the various forms of external loads, waves have the
most dominant effect on the hydrodynamic responses of float-
ing structures [6]. Although long-term statistics and weather
forecasts can provide an approximate range of significant
wave heights and peak wave periods at an operation site,
these parameters may not be sufficiently accurate for real-time
decision-making. The directional wave spectrum describing
the wave energy across different frequencies and directions
provides valuable information about the characteristics of
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waves. It can be measured suing several approaches. Mete-
orological satellite systems can offer an overview of wave
statistics across a large sea area, but considering the limitations
of low resolution and time delay, they are unsuitable for
real-time estimations [7]. Wave radar is another measurement
approach [8]. Due to the high cost and need for frequent
calibration, however, it is only equipped on a limited num-
ber of vessels [9]. Wave rider buoys, compact and robust
accelerometer assemblies with pitch and roll sensors, have
emerged as a mature solution for sea state estimation [10].
However, these systems are limited to long-term service in
fixed sea areas and are not suitable for real-time, in-situ
applications. Consequently, there is a shortage of real-time
wave information to support marine activities.

Given that a vessel’s responses are predominantly driven
by sea waves and most vessels are equipped with motion
sensors, oscillating ships can be considered as large wave
buoys that provide real-time sea state estimates at no additional
cost. Consequently, an indirect estimation approach called
the wave buoy analogy (WBA) has been proposed [11]. Its
theoretical foundation is the near linear relation between the
cross-spectra of ship motion and the wave spectrum in the
frequency domain. A response amplitude operator (RAO) is
the transfer function that relates the vessel’s motion to the
wave elevation [12]. Depending on the needs for transfer func-
tions, the WBA can be classified as either a model-based or
data-driven approach. Model-based methods determine the sea
state using a known wave-response model, whereas data-driven
methods derive the wave spectrum through online or offline
training model.

RAOs are assumed to be perfectly known in the
model-based WBA, and both parametric and nonparametric
approaches can be employed [13], [14]. In parametric methods,
the wave spectrum shape is controlled by several predefined
parameters, such as JONSWAP and Bretschneider [15]. The
optimal wave parameters are estimated through a nonlinear and
nonconvex optimization process that may introduce computa-
tional instability [16]. Without any assumptions about the wave
spectrum shape, the nonparametric approach is more accurate
and flexible [17]. It is better suited to perturbations in the
data and allows for a more robust estimation. In nonparametric
approaches, the linear system between the response spectra and
wave spectrum is discretized into a series of underdetermined
equations. The estimation of the sea state is transformed into
solving the linear ill-posed problem [18]. Various methods
have been employed in earlier works on this topic. The most
common technique for addressing inverse problem is convex
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optimization [19]. Sparse regression can be introduced to
improve the estimation performance under disturbed cross
motion spectra. The sparsity and smoothness control terms
of the wave spectrum are described in [20]. The Bayesian
method provides progressively improved estimates of the
wave spectrum through iterative updates of prior probability
distributions [21], [22]. To improve computational efficiency,
the adaptive Kalman filter was introduced to incorporate future
time step measurements as inputs for the current state-space
equation, enabling a recursive method [23].

Data-driven methods are gradually gaining popularity as
a means of reducing reliance on ship RAOs. A multi-layer
classifier is proposed to evaluate the current sea states by
extracting features from ship motion data [24]. Additionally,
SeaStateNet, a deep neural network designed for sea state clas-
sification using the responses of a dynamic positioning (DP)
vessel eliminates the need for hand-engineered features [25].
In another approach, a convolutional neural network can be
employed to estimate the sea state parameters using ship
motion and structural response data collected from container
ships [26]. State-of-art artificial intelligence frameworks are
also introduced to provide enhanced estimates, free from the
hydrodynamic model [27], [28]. While data-driven methods
liberate the estimation process from RAO dependency, they
still face limitations due to the need for training data. More-
over, computational costs and hardware requirements must
also be considered.

The data-based approaches face inherent poor adaptability,
making it impractical to train a model for every ship that
needs to employ WBA techniques. To address the issue,
an uncertainty-aware hybrid approach [16] is proposed, which
utilizes both model-based methods and machine learning
methods to estimate sea states when training data is lim-
ited [29]. The study’s conclusions emphasize the importance of
model-based estimation, which ensures that WBA can produce
reasonably accurate estimates. Consequently, it is crucial to
further develop robust and accurate model-based methods to
fully utilize and understand the available RAOs. The uncer-
tainties in transfer functions is an inherent problem of the
model-based WBA. There exist a fusion estimate solution,
using multiple ships simultaneously employed as wave buoys.
The frequency-wise variation of wave spectrum estimates is
assumed to reflect the level of (un)certainty for each individual
estimate and is employed as a weighting parameter [30].
Because ships have complex geometrical forms compared
to wave buoys, the non-uniformly distributed transfer func-
tions also induce varying levels of performance when ships
encounter waves of diverse directions and frequencies. How-
ever, the phenomenon has not been explained in existing
studies.

Inspired by compressed sensing, which is similar to the
algorithms employed in WBA, the current work aims to
demonstrate the performance variation from a mathematical
perspective. The restricted isometry property (RIP), which
ensures the preservation of distances between all possible
sparse signals [31], [32], is introduced to evaluate the quality
of WBA estimates. A performance assessment criterion for
WBA is proposed, incorporating RIP into the analysis of the
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transfer matrix to pre-evaluate the WBA performance using
only RAOs as input. Considering that marine operations or
shipping often involve multiple ships, a multispectral fusion
algorithm is introduced to facilitate scenarios where multiple
ships are simultaneously employed as measurement buoys.
Building on this criterion, the proposed method enables the
combination of estimates from multiple ships to achieve a
more precise and comprehensive result. The main contribu-
tions of this study are as follows:

o The RIP theory is integrated into to the WBA framework,
enabling the accomplishment of performance evaluation
before calculation.

+ An RAO-driven assessment criterion is pioneeringly pro-
posed to quantify the reliability of the WBA estimates.
For the first time, the relationship between ship hull
and estimate accuracy in various sea states is addressed
quantitatively.

« Based on the proposed criterion, a multispectral fusion
algorithm is offered to fuse multiple estimates obtained
from ships with different geometries and headings.

This study is organized as follows. The notations and
preliminary information are introduced in Section I-A.
In Section II, the problems with sea state estimation based
on ship motion are formulated and typical approaches intro-
duced. The RAO-driven assessment criterion and proposed
RIP-based fusion estimation algorithm are described in Sec-
tions III and IV, respectively. Numerical experiments are then
described in Section V to validate the proposed algorithms.
Section VI concludes the study.

A. Notations and Preliminaries

Notations: R” and C" denote the sets of real and complex
n-dimensional spaces, respectively. The imaginary unit is
indicated by i, ie., 1 = J/—1. For a complex number x,
X is its complex conjugate, N(x) and J(x) are its real and
imaginary parts, respectively. For a given matrix X, X' is
its transpose, X* is its Hermite transpose, and || X||1, || X||2,
[|X||F are its [{-norm, I3-norm (Euclidean norm), Frobenius-
norm, respectively.

Compressed sensing is a signal processing technique that
allows for the recovery of a sparse or compressible signal from
a number of measurements smaller than what would tradition-
ally be required. It has applications in various fields, including
image processing, medical imaging, and data compression.
To recover the original sparse signal from measurements,
an ill-posed problem must be solved, i.e.,

b=Af, (D

where b € R™ is the measurement vector, A € R™*" jg
the measurement matrix, and f € R” is the unknown sparse
data vector. Reconstructing f from a known A and b is an
underdetermined problem because m < n. The accuracy of
reconstruction depends upon the RIP of measurement matrix,
formally defined as follows.

Definition 1 (RIP [33]): For all k-sparse vectors g, most
entries are zeros, and there are at most k non-zero entries.
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A measurement matrix A is said to satisfy k-th RIP, which is
defined as

(1—8)llgll3 < [1Aql3 < (1 +8)llqll3. )

where 0 < § < 1. Then, the k-th restricted isometry constant
(RIC) 4 is defined as the infimum of all §, satisfying k-th
RIP, ie.,

8 := inf {8 ((1=98)llgll3 < 1Aqll3 < (1 +8)lIqll5. Vq}.
3)

Lemma 1 (RIC and eigenvalues [34]): If a measurement
matrix A satisfies the k-th RIP with RIC &, the following
inequality holds,

I -6 < kmin(A*A) =< Kmax(A*A) < 1+, (4)

where Amin(A*A) and Amax(A*A) denote the minimal and
maximal eigenvalues of A*A, respectively.

II. PROBLEM FORMULATION
A. Coordinate Definition of Discrete Wave Spectrum

The global reference frame has a distribution starting at
zero degrees and moves clockwise from true north, while
the distribution along a ship’s longitudinal axis is referred
to as the body-fixed reference frame (see Fig. 1). The WBA
regards an oscillating ship as a wave rider buoy to reconstruct
the real-time wave spectrum from ship motion responses.
Conventionally speaking, the six degrees of freedom (DOFs)
motions of a vessel (i.e., surge, sway, heave, roll, pitch, yaw)
are indexed by the set J = {1, 2, 3,4, 5, 6}, respectively. The
set of DOFs selected in the subsequent calculation is I € J.
In the present study, for DP vessels, heave, roll, and pitch
motions are considered and the influence of the DP system
can be neglected [35], i.e., I = {3, 4, 5}. The total number of
selected DOFs is denoted by Ny.

A directional wave spectrum includes two variables: the
frequency w and incoming wave direction «. In Fig. 1, a wave
is moving toward north when o = 0. The vessel heading is
defined as the longitudinal ship axis with respect to north,
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Discretized wave spectrum in the global and body-fixed reference frame systems.

denoted by v, and the relative wave heading g represents the
incoming wave direction related to the vessel heading, i.e.,
B = a — . The wave spectrum distribution to the north is
referred to as the global distribution, i.e., E(w, a). Conversely,
in the body-fixed reference frame, E(w, ) refers to the
distribution along the vessel’s longitudinal axis. Depending on
the wave heading 8, the wave distribution in the body-fixed
frame determines the characteristic of the incoming waves. For
instance, the beam seas correspond to 8 € [%, 27”] U [%”, 57”].
The estimation is performed in the body frame and then
transformed into the global frame. The vessel heading is
measurable and assumed to be known. The directional wave
spectrum is discretized into a network with N, frequencies
and Ng directions, where N,, is the total number of the wave
frequencies and Ng is the number of the discrete wave heading
directions (see Fig. 1). The indexes of components m and n are
definedasm e M ={1,--- ,N,}andn e N={1,---, Ng}.

B. Wave Buoy Analogy

The cornerstone of the WBA method is the linear relation
between ship motions and incoming waves in the frequency
domain according to linear wave theory. Assuming that a ship
is a linear time-invariant system and the sea state remains
steady, linear equations for the response spectra and directional
wave spectrum can be constructed in the frequency domain.
The RAOs are complex-value transfer functions that can
be calculated by hydrodynamic code [36], i.e., ®(w, B) =
NP (w, B)) + iJ(P(w, B)). The response cross-spectra of a
vessel at a specific frequency w,, is the integral over the wave
heading B, expressed as

Sij(@m) =/ D (wm, B)Pj(wm, B)E(wm, B)dB
Np
~ AB D @i (@m. Br) P (@ B E(@m. ). (5)

n=1
where §;; denotes the cross-spectra between the ith and jth

DOFs, ®; and ®; are the complex transfer functions of the
ith and jth DOFs, and Ap is the intervals among the discrete
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Fig. 2. Motion RAOs of a cargo ship.

Bn. The cutoff frequency wy,, is selected where the values of
the response spectra tend towards zero, i.e., the wave-induced
loads excited by the wave components with frequencies larger
than wy, are neglected.

The cross-spectra S;; contains real and imaginary parts.
When i = j, S;; € R; and for i # j, §;; € C
Hence, the value of S;j(w,) can be divided into three
parts: S;;(wp), N(S;j(wn)), and I(S;j(wy)). Equation (5)
can also be rewritten as the three-part expression, i.e.,
©; (@, Bu) P (@ms Br) = R (Py) R (B;) + 3 (93 (@) +
i[\“s (PN (ij) —N(P) I (d>j)]. Therefore, for a specific
frequency wy,, there exists a total of Ng equations, which can
be rewritten into a vectoral form

by = Amfma (6)

where b, € ]RNr?, An € RNL%XN/S, and f,, € RV, given as
(7), shown at the bottom of the page.

Rewriting the equations for all frequency components into
a vector form yields

b=Af, (8)
where b = [b] . b],....b}, 1T € RNiNo, A € RNNoxNiNo,
and f =[f", f,',.... fy. 17 € RN#No The wave spectrum

estimation is transformed into the solving of an underdeter-
mined linear equation (8). Solving such an ill-posed problem

 w (radls)

w (rad/s)

encounters numerical issues, including the lack of a unique
solution and sensitivity to perturbations [37].

C. Performance Deterioration of the WBA

Ships have different geometric shapes from those of spheri-
cal wave buoys. The hydrodynamic response of a given cargo
ship under incoming waves is significantly influenced by the
wave direction and frequency (see Fig. 2). According to the
RAOs, the heave motion exhibits a lowpass characteristic;
there is almost no roll motion in head seas or following seas,
and very low pitch responses are noticed in beam seas. Non-
uniformly distributed RAOs contribute to the performance
deterioration of the WBA under specific sea states. A number
of simulations were conducted to illustrate the variance.

The predefined sea state is assumed to be the product of a
long-crested wave spectrum and spreading function, given by

E(w,a) = S(w)D(a) ,

H? [((4A + 1)/4)60‘;,]A

. _4A +1 wp 4
SO = U et eXp[ 4 (w) ]
25—1p2 _
D(a) = w 0s2% (u) , 9)
al2s + 1) 2

where Hj is the significant wave height, w,, is the peak angular
frequency, o), is the mean wave direction, I' is the Gamma

b (@) = [Sii (@m) ... N (Sij (@m)) ..., 3

(Sij @m) -] (7a)

R(Pi (@m, PHR(Pi (@, B)) + I(Pi(@m, B)S(Pi (@, B))

Ap(wm) = AB

N(Pi (@m, PR(P j (W, B)) + I(Pi(@m, PII(Pj (@, B)) -+ |,

(7b)

S(Pi(@m, BHR(Pj (@, B)) — R(Pi(@m, PSP j(@wm, B))

i @) = [E @y B1), E (@ B2) -, E (0m, By,)] -

(7c)
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function, and s and A are the shape parameters. Ship responses
are simulated under predefined sea states, followed by a cross-
spectral analysis. It is assumed that the sea states remain stable
throughout a 300-second sampling period.

The nonparametric method is applied to reconstruct the
real-time wave spectrum. To calculate the vector-form wave
spectrum f from the transfer matrix A and response spectra
b, additional constraints and prior information are introduced.
The wave spectrum estimate f is received by solving the
following cost function, i.e.,

f=argmfin IIAf — blI3 + vl £113 + v2lIDfIL,  (102)
st.f>0, (10b)
fi=0, (10c)

fn, =0, (10d)

where D matrix can provide second-order differences of
estimated wave spectra in terms of frequency and direction,
and y, y2, and y3 are tuning parameters that provide trade-offs
between accuracy and smoothness. By setting suitable tuning
parameters, unsmooth estimates are less likely to be accepted.
The real wave spectrum is non-negative and tends to approach
zero in both the high and low frequency regions. Hence,
additional constrains are considered: (10b), (10c), and (10d).
By reshaping the optimal f into a matrix denoted as E,
we obtain the estimate of the directional wave spectrum
representing the current sea state.

A series of simulations are included below to illustrate the
performance deterioration under different sea states (see Fig. 3
and Fig. 4). The colorbar represents the distribution of wave
spectrum energy, with the blue indicating zero energy and
yellow representing the upper limit. Fig. 3 presents the WBA
estimates in the same sea state with different headings. Poor
estimation can be seen in head seas, beam seas, and following
seas, and the disparities are significant. The shapes of the

0.7 0.9

Predefined sea states in a special range of wave headings and corresponding estimates from the WBA (from left to right, the mean wave headings

estimates in the head and following seas are dispersive, as indi-
cating in the first and third columns of Fig. 3. Furthermore, the
energy distribution of the estimated spectra are concentrated
and peak energy higher in beam seas, as compared to the real
wave spectra shown in the second and forth columns of Fig. 3.

Figure 4 presents the WBA estimate of sea states with
a constant Hy and varying T,. In the frequency domain,
the ship acts like a lowpass filter when facing incoming
waves, attenuating high-frequency motion responses. Hence,
the WBA exhibits only a limited ability for high-frequency
waves. As depicted in the first column of Fig. 4, the WBA
precisely restores the distribution of wave energy when the
peak wave period is 8 s. However, the estimates from the WBA
deteriorate with the decreasing peak wave period T), resulting
in the scattered low-frequency and attenuated high-frequency
portions. Furthermore, when the peak wave period reduces to
5 s, the WBA estimation completely fails (see the last column
of Fig. 4). The performance degradation encountered with the
WBA is inevitable, due to a ship’s inherent hydrodynamic
characteristics.

D. Problem Statement

The WBA estimate from a specific ship is not consistently
reliable, and ships may experience performance deterioration
in specific sea states. Erroneous sea state estimations can
lead to deviations in decision-making, potentially resulting in
severe consequences.

The present study aims to provide a theoretical explanation
for the performance variations observed in the WBA. The
phenomenon primarily stems from the ship’s non-uniformly
distributed wave-to-motion response properties. By further
investigating and analyzing the inherent response functions,
the research attempts to propose an assessment criterion to
evaluate the reliability and accuracy of a specific ship’s
WBA performance. Given that marine operations often involve
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peak wave periods are 8 s, 7 s, 6's, and 5 s).

multiple vessels with different geometric shapes and oper-
ational headings, it is feasible to fuse sea state estimates
from different vessels to obtain more accurate and robust
measurements. We envision a scenario where multiple ships
are simultaneously employed as measurement buoys, using
the proposed assessment criterion as the basis for weight
distribution, thereby reducing the impact of erroneous results
on the estimates and improving overall reliability.

III. ASSESSING THE WBA PERFORMANCE USING RIP
A. Restricted Isometry Property

Compressed sensing is a revolutionary technique in data
acquisition and signal recovery. It is a mathematical framework
that allows for the efficient acquisition and reconstruction
of sparse or compressible signals by resolving an inverse
problem. The key factors in compressed sensing are the sparse
representation of signals and construction of the measure-
ment matrix. RIP, as defined in (2), is a crucial property
for constructing the measurement matrix because it ensures
the preservation of the distances between all possible sparse
signals. RIC, denoted as d, is a quantitative measure employed
to assess how well a matrix satisfies the RIP condition.
A small §; indicates that the measurement process minimally
distorts the distances between sparse vectors, which is essential
for achieving accurate signal recovery. The RIC is related
to the smallest and largest eigenvalues of the measurement
matrix [38].

Estimating the wave spectrum from ship motions exhibits
considerable similarity to signal recovery processes. First,
they are both solving an ill-posed inverse problem. And
the spectral power distribution of waves also shows sparse
characteristics because wave energy is concentrated within a
narrow range of wave periods and directions. Even a multiple
peak spectrum retains the sparsity. Specifically, for a 36 x

100 matrix, most elements are zero or close to zero. The
sparsity is reason that most regression optimizations often
use a LASSO structure to address such problems. Hence,
the inverse problem of the WBA can be equivalent to signal
recovery, and the transfer matrix in (8) is equivalent to the
measurement matrix in (1). Instead of a randomly constructed
measurement matrix, the transfer matrix in the WBA depends
on the RAOs. Unevenly distributed RAOs lead to disparities in
the eigenvalues, subsequently affecting the RIC distribution of
the transfer matrix. Variations in the RIC distribution explain
the discrepancies in computational accuracy across different
sea states. Accordingly, the performance deterioration of the
WBA can be analyzed from the RIC perspective.

B. Algorithm for Local RIC Estimation

To explain the performance variations in the WBA,
an algorithm is proposed here to calculate the local RIC
(summarized in Algorithm 1). To limit the range of the RIC,
the transfer matrix constructed by RAOs is normalized into
an interval of 0 to 1. The selection of the sparse order k and
frequency range r,, is determined in alignment with the narrow
bandwidth characteristics found in the power distribution of
the wave spectrum. For specific ranges of wave frequency and
heading, the block matrix A,,, is partitioned from the transfer
matrix A. The RIC of the blocked matrix A, (namely,
the local RIC) serves as a measure to evaluate the WBA
performance.

Remark 1: To ensure the robustness of the local RIC cal-
culation, a total of Ay random column sampling processes
are employed. First, column vectors are extracted from the
block matrix A,,,, according to randomly permuted indexes p.
The extracted columns are then used to construct an Hermite
matrix, denoted by STS. The eigenvalues A of the Hermite
matrix are obtained through singular value decomposition.
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Algorithm 1 Local RIC Calculation

Input: RAOs of a specific ship, sparse order k, range of frequency r,,, sample size A
Output: Assessment criterion A, overall performance criterion ®
1: Construct the transfer matrix A with a size of NgNw x NgN, from RAOs, and normalize it into 0-1 interval, denote as

A = A/max(abs(A));
2: for n < 1:Ng do
3 form <~r,+1: N, —r, do
4: Apn <~ Al:,nNy, +m —r, : nNy, +m +ry];
5: Neol < 2ry + 1;
6 for h < 1: h do
7 P < randperm(n .y, k);
8
9

S <« Aunl:, pl;

: A < eigenvalues(S'S);
10: if max(A) > 1 then
11: 8(h) < max(max(A) — 1, 1 — min(A));
12: else
13: 8(h) < 1 — min(A)
14: end if
15: end for
16: S(m.n) < & s 8(h);
17: end for
18: end for

19: A < §/max(abs(8)), ©® < [|1 — A||p

> Traverse in all directions
> Traverse in all frequencies
> Matrix block decomposition

> hg times of random column sampling
> Create k random indices within n.,;
> Column sampling from block matrix
> Calculate the eigenvalues using SVD

> RIC calculation based on Eq.(4)

> RIC calculation based on Eq.(4)

> Local RIC value corresponding to wy,, By

TABLE I
GEOMETRIC PARAMETERS OF THE THREE SHIPS

Geometry Shipl  Ship2  Ship3
Length (m) 52 55 98
Breadth (m) 8 12 15
Draught (m) 3 4 6

Subsequently, the RIC of each block matrix is calculated
using (4). The corresponding local RIC 8(m, n) is obtained
through the averaging of outcomes from each random column
sampling process.

Remark 2: By traversing a variety of wave directions and
frequencies, local RICs contribute to the comprehensive eval-
uation of the WBA performance. To ensure the comparability
of criteria across different ships, the local RICs are normalized
to fall within the O to 1 interval, thereby establishing the
assessment criterion referred to as A. Furthermore, the overall
performance of a specific ship can be quantified by calculating
the Frobenius norm of (1 — A), denoted by ©.

C. Assessment Criterion Based on the Local RIC

In compressed sensing, a measurement matrix with a lower
RIC leads to superior signal recovery. Similarly, under a
specific sea state with a peak wave frequency of w,, and mean
wave heading of B,, the WBA exhibits a better performance
when the value of the corresponding local RIC A(m, n) is
lower. The aforementioned pattern serves as the assessment
criterion, which can be derived depending only on the RAOs.

An illustrative example using three ships described below
to validate the proposed assessment criterion; the ships’
geometric parameters are listed in TABLE I. To establish
the assessment criterion A of each ship, Algorithm 1 was

employed with a sparse order k = 10 and a frequency range
of r, = 5. The sample size was set at ny = 1,000. For
the three ships, their respective local RIC distributions across
frequencies and directions are depicted in Fig. 5(a).

A substantial number of simulations was used to provide
further validation of the proposed assessment criterion. The
simulation process aligned with the methodology proposed in
Section II-C. To evaluate the estimation performance, a para-
metric sweep was conducted by varying the wave directions a,
and peak wave periods T, within the ranges of 0 to 360° and
3 to 20 s, respectively. It is noteworthy that the ideal response
spectra, obtained through the multiplication of the transfer
matrix and predefined wave spectra were utilized to prevent
disturbances stemming from inaccurate response cross-spectra.
The mean square error (MSE) was employed to compare the
real wave spectrum with the estimates, given by

1
Ny,Ng

MSE =

If = 7P (1D
where f denotes the vector form of the real wave spectrum
and f is the estimate derived from (10). Fig. 5(b) displays the
estimation errors for the three ships across various sea states.

As shown in Fig. 5, the patterns observed in the distributions
of estimation errors for the three ships were consistent with
the distributions of their respective local RIC values. The sim-
ulation results aligned with the proposed assessment criterion,
such as suboptimal performance under extremely high and low
frequency waves and reduced effectiveness when facing waves
at special headings. Additionally, the distributions of RIC
values corresponding to the ships’ estimation errors showed
that lower RIC values corresponded to lower MSE, i.e., more
accurate estimates. All three ships, despite their different
geometries, exhibited similar patterns. This robustly validated
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when encountering waves from various frequencies and directions.

the effectiveness of the proposed assessment criterion. The
results will be further discussed in Section V.

IV. MULTISPECTRAL FUSION

With the support of the proposed RAO-driven assessment
criterion, it becomes possible to pre-evaluate the WBA per-
formance using the main wave features (mean wave direction
and frequency). Consequently, the criterion can serve as the
foundation for scenarios where multiple ships are simulta-
neously employed. Under a specific sea state, the criterion
provides a quantitative measure of the reliability and accuracy
of estimates from each ship, serving as the basis for weight dis-
tribution. Ships corresponding to lower local RIC values under
the current sea state are considered more reliable. By employ-
ing this approach, the influence of inaccurate estimates can
be restrained or even eliminated, while the contribution of
accurate estimates is given more weight. As a result, the fusion
results will be more robust. The whole multispectral fusion
algorithm is summarized in Fig. 6.

Remark 3: The indexes of multiple ships are defined as
g € Q={1, -+, Nship}. Using Algorithm 1, the assessment
criteria and overall performance of multiple ships can be
established beforehand. The priority of the fusion algorithm
involves obtaining the peak frequency w, and mean wave
heading B, for each estimate. Then, the local RIC A, (m, n)
and overall performance ®,; both contribute to the weighted
parameter ;. When p, exhibits a high value for a specific
ship, the estimate is considered reliable, resulting in a higher
weight assignment during the fusion process. Conversely, if 1
falls below the threshold value 7, the estimate is regarded as
unreliable and makes no contribution to the fusion process.
Whereafter, a frame transformation is executed. Multiple direc-
tional wave spectra are fused in the global frame, utilizing the
weighted parameter jg.

Remark 4: If the maximum value of {u} fall below the
threshold value, the fusion algorithm designates the estimate
with the highest weight as the ultimate estimate.

360 0 90 180
BE©) BC)

MSE distribution of Ship2

360 0 9 180
B BE)

270 360 0 90 180 270 360
BE)

MSE distribution of Ship3

270 360 0 90 180 270 360
B

(a) Local RIC distributions of three ships across various frequencies and directions; (b) Distributions of WBA estimation errors of the three ships

Initialization: Local RIC distributions A, and overall performance ©,; Multiple
estimates F1, Es, ..., E, and ship headings 1, %3, . . ., %g; Threshold value 7

—>( For every estiamte Eq: ’(7
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the corresponding A4 (m, n)
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Fig. 6. Flow chart for the multispectral fusion algorithm.

V. SIMULATION

A. Overview

Numerical simulations were implemented to verify the
RIP-base fusion algorithm. Three different DP ships with
various geometric shapes and hydrodynamic coefficients were
employed, as listed in TABLE 1. The sea state was assumed to
be stationary during a 300-second sampling period. The direc-
tional wave spectrum, predefined using (9), was discretized
into a 100 x 36 grid. A angular frequencies from 0.03 to
3.14 rad/s were considered, and N, = 100. Wave headings
from 0° to 360° were discretized into angles with intervals of
10°, so Ng equaled 36.
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Regarded as the superposition of waves from different
directions and frequencies interacting with the RAOs, ship
responses could be expressed as follows

No Ng
r6) = D" auncos(@nt + mn + €mn), (12a)
m=1n=1
mn = | D (@m, Bu) IV 2E (@m, Bn) AwAB, (12b)
S[P (@, Bn)]
Gmn = arctan(—————-), (12¢)

R[P(@m, Bn)]

where a,,, is the motion amplitude at specific frequency wy,
and wave heading B,, ¢, contains the phase information for
the RAO, €, is the random phase angle, and Aw and AB
are the increments of the discrete directions and frequencies.
By selecting an appropriate window size and overlap length,
the Welch method was adopted to calculate the cross-spectra.
The time series and corresponding cross-spectra of a specific
ship are presented in Fig. 7.

A set of predetermined sea states, as detailed in TABLE II,
were employed in simulations to showcase the effectiveness
of the multispectral fusion algorithm. The significant wave
height Hy, peak period T,, and shape coefficient s were
randomly selected within the ranges of 1 to 1.8 m, 5 to 15 s,
and 17 to 23, respectively. The selection of wave height is
due to the WBA theory’s inability to address nonlinearity
under high seas; hence, moderate sea states were considered,
where the significant wave height and wave period within the
most commonly used range 1-1.8 m and 5-15 s, respectively.
The spreading parameters were chosen based on common

2007

TABLE I
ENVIRONMENTAL PARAMETERS AND SHIPS’ HEADINGS

No. Hsm) op(®) Tpls) sG) 1) ¥20) ¢30)
1 1.57 149.4 6.8 23 130 110 90
2 1.33 141.8 8.7 22 170 130 60
3 1.46 12.6 9.2 19 170 70 170
4 1.6 305 6 21 30 150 40
5 1.55 147 12.1 19 70 80 120
6 1.4 11.9 6.9 21 170 10 100
7 1.68 265.5 5.2 20 0 70 150
8 1.22 2732 6.5 23 40 100 130
9 1.64 78 124 20 90 20 100
10 1.29 922 8.3 22 170 80 100
11 1.27 97.4 14.9 20 40 90 170
12 1.47 140.8 8.2 21 40 100 40
13 1.24 133.1 6.2 22 90 50 60
14 1.31 283.9 8.5 22 90 60 80
15 1.45 230.6 7.1 17 60 100 80
16 1.3 324.8 7.5 17 60 150 50
17 1.53 121.9 8.6 17 80 140 50
18 1.28 38.9 8.4 22 10 20 80
19 1.62 154.1 6.2 22 80 40 110
20 1.67 262.9 83 22 100 160 50

TABLE 1III

WEIGHT DISTRIBUTIONS AND MEAN SQUARE ERRORS OF ESTIMATES

Weight (-) Mean square error (m?2s/rad)

NO. Shipl ~ Ship2  Ship3 Shipl Ship2 Ship3 Fusion
1 0.32 0.39 0.29 1.40E-03  4.90E-04 1.12E-03  3.70E-04
2 0.44 0.56 0 4.26E-04 1.05E-04 4.76E-04 8.73E-05
3 0 1 0 9.07E-04 8.23E-05 8.96E-04  8.23E-05
4 0.49 0.51 0 1.67E-03  1.15E-03  2.27E-03 4.42E-04
5 0 1 0 4.20E-04 4.17E-04 2.93E-03 4.17E-04
6 0 0.59 0.41 5.57E-04 6.65E-04 5.28E-04  3.23E-04
7 0.55 0.45 0 8.03E-04 1.21E-03  2.56E-03  4.96E-04
8 0.44 0.56 0 3.41E-04 3.44E-04 6.73E-04  8.44E-05
9 0 1 0 4.99E-04 3.44E-04 1.57E-03 3.44E-04
10 0.43 0.57 0 4.77E-04  2.75E-04 5.03E-04 1.23E-04
11 1 0 0 4.15E-04 4.73E-04 4.49E-04 4.15E-04
12 0 1 0 8.12E-04  7.57E-05 8.67E-04  7.57E-05
13 0.30 0.43 0.26 4.51E-04 391E-04 9.38E-04 1.67E-04
14 0 1 0 3.39E-04 1.30E-04 4.56E-04 1.30E-04
15 0 1 0 1.24E-03  2.65E-04 1.06E-03  2.65E-04
16 0.29 0.40 0.31 8.52E-04  3.07E-04 4.65E-04 1.36E-04
17 0 1 0 1.36E-03  3.92E-04 1.06E-03  3.92E-04
18 0.28 0.42 0.30 3.81E-04 6.65E-05 2.17E-04  8.68E-05
19 0.33 0.43 0.25 1.30E-03  1.45E-03  2.28E-03  5.02E-04

20 0.00 0.55 0.45 9.65E-04 2.38E-04 1.32E-03 2.55E-04

recommendations in sea wave research. The headings were
independent and randomly selected, denoted by .

Their RIC distributions were pre-calculated as illustrated in
Fig. 5(a), and then applied as the basis of multispectral fusion
procedure. A threshold value n = 0.15 was employed. Con-
sequently, if the weight dropped below 7, the corresponding
estimate was deemed unreliable.

B. Results

Although, the effectiveness of the WBA performance assess-
ment criterion was preliminarily discussed in Section III,
additional observations related to Fig. 5 could be made.
Despite the similar patterns observed in the local RIC distribu-
tion and the WBA performance, the geometry and size of the
ships are additional factors that influence sea state estimation.
Ship 3, the largest ship, displayed the most pronounced
low-pass characteristics. The low-value portion of the local
RIC was situated in the lower frequency region, indicating
that the larger vessel exhibited superior performance when
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Fig. 10. Estimates obtained from the WBA of multiple ships and the fusion estimate, as compared to the real sea state (Sea state 3).

encountering low-frequency sea states, which was confirmed
in simulations. Conversely, the smallest ship, Ship 1, exhibited
much better performance in relatively high-frequency waves.
Generally, smaller ships demonstrated a more comprehensive
capacity to handle different wave conditions.

Simulations were conducted under all the listed sea states
and several typical cases, illustrated in Fig. 8-11, are included
here to demonstrate the significant effectiveness of the mul-
tispectral fusion. The colorbar in the figure represents the
energy distribution, with the blue indicating zero energy and
yellow representing the upper limit. In Fig. 8, estimates
obtained from multiple ships failed to accurately replicate

the real-time wave spectrum. The directional wave spectrum
from Shipl feature a higher and more concentrated energy
distribution. In contrast, the estimates from the other two ships
displayed lower energy levels as compared to the real sea
state. By employing different weights to multiple estimates,
the estimation error of the fusion spectrum derived from the
multispectral fusion algorithm significantly decreased. In Sea
State 2, the estimate from Ship 3 was regarded as unreliable
in the fusion process. The simulation results supported this
decision, as the wave spectrum from Ship 3 became diffused
and recorded the highest MSE. Conversely, the estimates from
the first two ships were closer to the real situation. The fusion
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result derived from these two estimates demonstrated further
reduced error, as shown in Fig. 9.

Simulation under Sea state 3 displayed a special case
because all three weighted parameters from the assessment
criteria fell below the threshold value. Hence, the fusion
algorithm regarded the most reliable estimate as the final
result. The simulation result showed that the selected estimate
was the most accurate. Hence, it is possible to exclude the dis-
traction from unreliable estimates to obtain an accurate result
with the support of the RIP-based assessment (see Fig. 10).
In Sea state 4, the waves exhibited high-frequency character-
istics (see Fig. 11). The largest ship, Ship 3, completely failed
to estimate the sea state and had no contribution in the fusion
process. Under such high-frequency conditions, the estimates
from the other two ships were also suboptimal. However,
with the involvement of the proposed fusion method, the
final estimate derived from the fusion algorithm substantially
reduced the estimation error.

The weight distribution and error analysis results for other
sea states are tabulated in TABLE III. The minimum error
values for multiple estimates and fused results are indicated
in bold. It was evident that the fusion algorithm significantly
enhanced the accuracy of the sea state estimations in most
cases. Even in situations where all three estimates were
deemed unreliable, the algorithm successfully identified the
most accurate spectrum as the final estimate. In the few cases
where the fused result did not improve the error compared
to the best estimates from the three ships. The errors were
roughly equivalent to those of the most accurate ship. Hence,
the results were generally considered to have no negative
impact on the accuracy of the existing estimates.

VI. CONCLUSION

Using oscillating ships as wave buoys supplements existing
methods, providing an alternative option to derive real-time
on-site wave information by utilizing only motion sensors.
However, the WBA concept is built on many ideal assumptions
and is constrained by the ship’s inherent hydrodynamic prop-
erties. This study aims to interpret the relationship between
the transfer functions constructed by RAOs and wave esti-
mate accuracy from the perspective of RIP. The proposed
RIP-based assessment criterion can be used to evaluate the

Estimates obtained from the WBA of multiple ships and the fusion estimate, as compared to the real sea state (Sea state 4).

reliability of estimates from the WBA. It is valuable for
determining whether a ship can achieve an effective estimate
and for avoiding erroneous estimates that could mislead on-
site decision-making. Considering that marine operations often
involve different types of ships and lack sufficient sea state
information, a RIP-based multispectral fusion algorithm was
proposed to combine the estimates obtained from multiple
ships, using local RIC values as the weighting basis. Sim-
ulations were conducted with three ships of different sizes,
proving the effectiveness of the proposed criterion and fusion
approach.

The current study aims to explain the inherent problems
faced by WBA in theoretical terms. Multispectral fusion
is presented as a possible application scenario since ships
have different estimation performances when facing incom-
ing waves. Model tests and sea trials are needed to further
demonstrate the applicability and effectiveness of the proposed
methods. There are some issues that need to be discussed.
In water tank tests, producing short-crest irregular waves
is extremely difficult, and addressing the scale effect is a
challenge. In sea trials, setting a benchmark is problematic.
Existing works often use large-scale observations like satel-
lites, which have poor resolution and considerable delay. The
best solution is to directly collect data from ships equipped
with wave radar and motion monitoring systems for crossing
contrast.

From the perspective of the WBA area, there are some
limitations that need to be addressed. The assumption of a
perfect RAO is too ideal, as a ship’s hydrodynamics vary
with different draughts and changes in working status. The
hybrid approach, combining an online training data-driven
model and a model-based method, is a considerable prospect.
The assumption of a stationary sea state is another limitation.
While it is acceptable for long-term service, in the scenario of
WBA applications where real-time wave spectrum calculations
are required, the time-varying properties of the sea state should
be considered in future research.
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